GEOMAGNETISM, PALEOMAGNETISM, MAGNETOSTRATIGRAPHY

Alessandro G

definitions

Geomagnetism

studies the current magnetic field of Earth

Paleomagnetism

studies the ancient magnetic field of Earth, as recorded in rocks

Magnetic Stratigraphy

 takes advantage of magnetic properties of rocks to subdivide the rock record in distinct stratigraphic units

Geomagnetism (a quick review)

- Studied when discussing Plate Tectonics
- Core, mantle, crust
- Outer core is made of spinning liquid iron:
 - metallic bond
 - electrons in motion generate electric current
 - electric current generates electromagnetic field

Earths' magnetic field today

- The magnetic field can be recorded in rocks
- Best record is in extrusive, Fe-rich igneous rocks
- Many rocks contain minerals that are naturally magnetic, such as
 - magnetite (Fe₃O₄)
 - hematite (Fe₂O₃)

Magnetic properties recorded in rocks

- Every single point on Earth is characterized by its own specific magnetic properties, which can be recorded in rocks
- Declination
 - angle between the true north (that is, the NP) and the magnetic North (NMP).
- Inclination
 - angle between the direction of the magnetic field and the horizontal surface
- Intensity
 - how strong the field is in a rock

- The North Magnetic Pole (NMP) does not coincide with the geographic North Pole (NP)
- The position of the NMP varies yearly

Inclination

Declination

- When minerals become oriented in the direction of the magnetic field of the time, they are said to have acquired a **PERMANENT MAGNETIZATION**
- In general, there are three different ways in which permanent magnetization can be obtained:
 - Thermal Remanent Magnetization (TRM)
 - Detrital Remanent Magnetization (DRM)
 - Chemical Remanent Magnetization (CRM)

TRM

- During the process of igneous rocks solidification, magma (or lava) cool to a solid state
- Every mineral solidifies at its own temperature
- After solidification, cooling may continue below a threshold value, called the Curie Point
- In the interval between the solidification temperature and the Curie Point, magnetization can be changed
- Below the Curie Point, it becomes permanent

- in a mafic igneous rock, crystals (such as amphiboles and pyroxenes) will orient themselves in the direction of the magnetic field upon cooling
- when temperature drops below the Curie Point, that is it: magnetization is LOCKED in the crystal

- TRM is very important in basaltic lavas because:
 - they are rich in iron
 - that means a lot of magnetic indicators
 - they cool quickly
 - that means that the time frame is very short

DRM

- Sedimentary rocks can acquire a DRM when magnetic grains (for instance, sand grains of magnetite) are eroded, transported and then deposited
- for instance, in a river bar, grains of magnetite can be realigned in the direction of the magnetic field
- DRM is always weaker than TRM

CRM

- When hematite is deposited as a cement or is moved around during metamorphism, it can acquire the direction of the magnetic field
- Notice that in this case, the CRM belongs to the cement, and not the original sediment (or rock)

- While the NMP oscillates around the NP, statistically (on a geological time scale) it can be said that the two coincide
- But, the magnetic field "flips"
 - the NMP switches with the SMPO, and viceversa
 - the needle of a compass would point South instead of North

- Today, the compass needle points North

 we call this a Normal Magnetic Field
- At times in the past, the compass needle pointed South
 - we call this a Reverse Magnetic Field

- Reversal are of great utility in geology because:
 - they are synchronous
 - they happen at the same time at all locations
 - they are global
 - the whole world is affected at the same time

- As such, reversals are a great tool for CORRELATION
- A geomagnetic scale has been established
- The basic unit is called a Chron
- Chron starts form today (Chron 1 Normal, or C1N) and go back in time

