

Archean Pillow Basalts (Greenstones)
Gilbert, Minnesota
© Alessandro Grippo

Numerical Time

- Numerical Time vs. Relative Time
- we obtain a number (with a margin of error)
- Numerical methods are based on the Radioactive Decay of isotopes
- They work with Igneous Rocks only
- except for ${ }^{14} \mathrm{C}$, which works for organic matter only

Isotopes: a review

- Atoms
- protons, neutrons, electrons
- Isotopes
- Elements with the same number of protons, but different number of neutrons
- Can either be stable or unstable (radioactive)
- Stable isotopes are mostly used in studies of climate change
- Radioactive isotopes are used in the determination of the numerical age of a rock or, in certain cases, organic matter

Stable vs. Unstable Isotopes: examples

${ }^{16} 0$
8 protons
8 neutrons
stable

${ }^{18} 0$
8 protons
10 neutrons
stable

${ }^{12} \mathrm{C}$
6 protons
6 neutrons
stable

${ }^{13} \mathrm{C}$
6 protons
7 neutrons
stable
${ }^{14} \mathrm{C}$

6 protons
8 neutrons
radioactive

Radioactive (or Unstable) Isotopes

- Radioactive isotopes decay over time, turning into stable isotopes
- Radioactive isotopes are called the Parent Isotopes (P), while the products of their decay are called Daughter Isotopes (D)
- So P \rightarrow D over time

Radioactive Isotopes: from Parent to Daughter

- There are several different couples $P \rightarrow D$ in nature
- Examples:
- ${ }^{238} \mathrm{U} \rightarrow{ }^{206} \mathrm{~Pb}$
- ${ }^{235} \mathrm{U} \rightarrow{ }^{207} \mathrm{~Pb}$
- ${ }^{40} \mathrm{~K} \rightarrow{ }^{40} \mathrm{Ar}$
- ${ }^{87} \mathrm{Rb} \rightarrow{ }^{87} \mathrm{Sr}$
- ${ }^{14} \mathrm{C} \rightarrow{ }^{14} \mathrm{~N}$

the concept of Half-Life

- All these couples $P \rightarrow$ decay according to the same law
- Concept of "Half-Life"
- The Half-Life of a radioactive isotope (P) is the amount of time that it takes for one half of it (P) to turn into D
- That is, the time that it takes for a Parent isotope (P) to be reduced by 50\%

the concept of Half-Life

- It does not matter how many atoms of P one starts with: the concept of Half-Life is based on a percentage
- the time that it takes for 1 million P to decay into $500,000 \mathrm{P}$ is one half life
- the time that it takes for 4 P to decay into 2 P is still one half-life
- these two half-lives are identical in duration (for the same couple P \rightarrow D)
- So, what changes from couple to couple?
- Why do we need different couples?
- The duration of Half-Life is actually different for every couple $P \rightarrow D$

A

B
What is the age of a rock that contains 25% of the original ${ }^{235} \mathrm{U}$?
Go on the y axis of the diagram, locate 25%
From there, go parallel to the x axis and intercept the curve.
From there go down to the x axis and you fill find out that the number of half-lives required is 2 .
(It makes sense: it takes 1 half-life to go from 100% to 50%, and another half-life (total of 2) to go from 50% to 25%).

At this point you have to multiply the length of the half-life of the ${ }^{235} \mathrm{U} \rightarrow{ }^{207} \mathrm{~Pb}$ (710 million years) by two. The rock is 1,420,000,000 years old

What can I date?

- Igneous Rocks
- When magma cools, igneous rocks can include some P, but not D
- For instance, when felsic magma cools underground, forming plutons, they originate a rock called granite
- The common minerals in granite are

$$
\begin{array}{ll}
- \text { Quartz } \mathrm{SiO}_{2} & \text { Na-Plagioclase } \mathrm{NaAlSi}_{3} \mathrm{O}_{8} \\
\text { - K-Feldspar } \mathrm{KAlSi}_{3} \mathrm{O}_{8} & \text { Biotite } \mathrm{K}\left(\mathrm{Mg}, \mathrm{Fe}_{3} \mathrm{AlSi}_{3} \mathrm{O}_{10}(\mathrm{OH})_{2}\right.
\end{array}
$$

- But other, less common elements (such as Zr , Zirconium, and U, Uranium) can also form minerals
- Zircon ZrSiO_{4}

Zircons in igneous rocks

- Zircon

- When magma cools, zircons form as a relatively rare mineral in igneous rocks
- We have seen how Uranium (U, the Parent isotope) turns in time into Lead (Pb , the Daughter isotope)
- Zircons would only allow Uranium to enter their structure (as an impurity), but NOT Pb

After one-half life, 50% of U has decayed into Pb . We are CERTAIN that Pb comes from decay of U and was not originally in the Zircon, so we know how many original atoms of U we had. That amount will be our 100\% Parent

- Zircon
- So, when zircons crystallize, it does not matter how many P are present: whatever their number, they will constitute 100% of isotopes
- After cooling, P start to turn into D
- When recovering igneous rocks, the sum of P and D present in it would give us the number of original P
- So we know how many P we had originally, and how many we have today, and we take that percentage on the radioactive decay curve

Curve of Radioactive Decay

why only Igneous Rocks?

- Igneous rocks are a closed system
- Metamorphism opens up the system
- you can date the time of metamorphism, sometimes
- oldest rock on Earth, Acasta Gneiss (NWT, Canada), dated at 3.96 billion years
- Sedimentary rocks can be dated for individual minerals but not for the rock itself: still, not a closed system
- A Mesozoic sandstone (age know through relative methods), still from Canada, contains zircons grains dated at 4 billion years
- the grain is older than the previous rock, but it is NOT A ROCK
- It is always a safe bet to date with two different systems $\mathrm{P} \rightarrow \mathrm{D}$: dates should be concordant

Fission-Track Dating

- Uranium decay also leaves linear tracks in crystals
- Counting how much uranium is left, and how many fission tracks are present, allows dating
- If the rock gets heated (metamorphism!), tracks are annealed and method does not work

${ }^{14} \mathrm{C}$ methods

- ${ }^{14} \mathrm{C}$ is produced by high-energy solar radiation in the upper atmosphere: ${ }^{14} \mathrm{~N}$ is "excited" and transformed into ${ }^{14} \mathrm{C}$
- ${ }^{14}$ C enters Earth's systems, becoming part of atmospheric CO_{2}
- $\quad{ }^{14} \mathrm{CO} 2$ is then taken up by algae and plants during photosynthesis
- Plants contain the same amount of ${ }^{14} \mathrm{C}$ of the atmosphere
- Animals eat plants
- Animals contain the same amount of ${ }^{14} \mathrm{C}$ of the atmosphere too

Conifer forest

Medicine Lake
Siskiyou County, California
© Alessandro Grippo

${ }^{14} \mathrm{C}$ methods

- ${ }^{14} \mathrm{C}$ amounts remain constant in living organisms and also in certain kinds of ceramics (as long as the system is, again, closed)
- ${ }^{14} \mathrm{C}$ is not replaced upon death, so that we can go back in time to the moment of death by knowing its half-life (5730 years)
- Because this half-life is very short, we cannot use the method on organic matter that is older than 50,000 years ago
- So, we CAN date fossils with this method as long as they are < 50,000 years old
- Human bones: yes
- Dinosaur bones: no

© Cengage Learning

Other Numerical Methods

(not using radioactivity)

- We have to be able to count, and anchor that count to a known, specific date (otherwise we have so -called "floating chronologies"):
- Tree Rings
- yearly rings
- Varves
- yearly sediment couples
- Milankovitch (Astronomical) Cycles
- astronomical patterns (20,000, 40,000, 100,000, 400,000 years)

Tree Rings

Tree Rings
Lake Como, Hamilton, Montana

Varves

- Glacial sediments constituted by a light-colored layer and a dark -colored layer
- Light colored sediment is deposited during warm season
- Dark colored sediment is deposited during cold season
- A varve represents 1 calendar year

Milankovitch Cycles

knowing the duration of a layer, and counting the layers

Cretaceous Scaglia Bianca Formation (limestone)
Gubbio, Perugia, Italy

What method should I use?

- It depends on what I have available
- It depends on the age range I need to estimate
- If older than one million years, I will use radioactive methods

NUMERICAL TIME

the end

