GEOLOGIC TIME part VI – Numerical Time

Alessandro Grippo, Ph.D

Archean Pillow Basalts (Greenstones) Gilbert, Minnesota © Alessandro Grippo

Numerical Time

Numerical Time vs. Relative Time
 – we obtain a number (with a margin of error)

- Numerical methods are based on the Radioactive Decay of isotopes
- They work with Igneous Rocks only
 - except for ¹⁴C, which works for organic matter only

Isotopes: a review

- Atoms
 - protons, neutrons, electrons
- Isotopes
 - Elements with the same number of protons, but different number of neutrons
 - Can either be stable or unstable (radioactive)
 - Stable isotopes are mostly used in studies of climate change
 - Radioactive isotopes are used in the determination of the numerical age of a rock or, in certain cases, organic matter

Stable vs. Unstable Isotopes: examples

	¹⁶ O	¹⁸ O	
	8 protons	8 protons 10 neutrons	
	8 neutrons		
	stable	stable	
¹² C	¹³ C	¹⁴ C	
6 protons	6 protons	6 protons	
6 neutrons	7 neutror	s 8 neutrons	
stable	stable	radioactive	

Radioactive (or Unstable) Isotopes

- Radioactive isotopes *decay* over time, turning into stable isotopes
- Radioactive isotopes are called the Parent Isotopes (P), while the products of their decay are called Daughter Isotopes (D)
- So $P \rightarrow D$ over time

Radioactive Isotopes: from Parent to Daughter

- There are several different couples P → D in nature
 - Examples:
 - $^{238}U \rightarrow ^{206}Pb$
 - $^{235}U \rightarrow ^{207}Pb$
 - ⁴⁰K →⁴⁰Ar
 - ${}^{87}\text{Rb} \rightarrow {}^{87}\text{Sr}$
 - ¹⁴C \rightarrow ¹⁴N

the concept of Half-Life

- All these couples P → D decay according to the same law
- Concept of "Half-Life"
 - The Half-Life of a radioactive isotope (P) is the amount of time that it takes for one half of it (P) to turn into D
 - That is, the time that it takes for a Parent isotope (P) to be reduced by 50%

the concept of Half-Life

- It does not matter how many atoms of P one starts with: the concept of Half-Life is based on a percentage
 - the time that it takes for 1 million P to decay into 500,000 P is one half life
 - the time that it takes for 4 P to decay into 2 P is still one half-life
 - these two half-lives are identical in duration (for the same couple P \rightarrow D)
- So, what changes from couple to couple?
- Why do we need different couples?
 - The duration of Half-Life is actually different for every couple Pightarrow D

Isotope		Half-life	Useful renge
Parent	Daughter	(years)	(years)
Carbon 14	Nitrogen 14	5,730	100 - 30,000
Potassium 40	Argon 40	1.3 billion	100,000 - 4.5 billion
Rubidium 87	Strontium 87	47 billion	10 million - 4.5 billion
Uranium 238	Lead 206	4.5 billion	10 million -
Uranium 235	Lead 207	710 million	4.6 billion

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

What is the age of a rock that contains 25% of the original ²³⁵U?

Go on the y axis of the diagram, locate 25%

From there, go parallel to the x axis and intercept the curve. From there go down to the x axis and you fill find out that the number of half-lives required is 2.

(It makes sense: it takes 1 half-life to go from 100% to 50%, and another half-life (total of 2) to go from 50% to 25%).

At this point you have to multiply the length of the half-life of the ${}^{235}U \rightarrow {}^{207}Pb$ (710 million years) by two. The rock is 1,420,000,000 years old

What can I date?

• Igneous Rocks

- When magma cools, igneous rocks can include some P, but not D
 - For instance, when felsic magma cools underground, forming plutons, they originate a rock called granite
 - The common minerals in granite are
 - Quartz SiO₂ Na-Plagioclase NaAlSi₃O₈
 - K-Feldspar $KAISi_3O_8$ Biotite $K(Mg,Fe)_3AISi_3O_{10}(OH)_2$
 - But other, less common elements (such as Zr, Zirconium, and U, Uranium) can also form minerals

– Zircon ZrSiO₄

Zircons in igneous rocks

• Zircon

- When magma cools, zircons form as a relatively rare mineral in igneous rocks
- We have seen how Uranium (U, the Parent isotope) turns in time into Lead (Pb, the Daughter isotope)
- Zircons would only allow Uranium to enter their structure (as an impurity), but NOT Pb

Both U and Pb are originally found in magm When magma cools, Zircon crystals can forn But, only U can enter in a Zircon, Pb cannot

After one-half life, 50% of U has decayed into Pb. We are CERTAIN that Pb comes from decay of U and was not originally in the Zircon, so we know how many original atoms of U we had. That amount will be our 100% Parent

• Zircon

- So, when zircons crystallize, it does not matter how many P are present: whatever their number, they will constitute 100% of isotopes
- After cooling, P start to turn into D
- When recovering igneous rocks, the sum of P and D present in it would give us the number of original P
- So we know how many P we had originally, and how many we have today, and we take that percentage on the radioactive decay curve

Curve of Radioactive Decay

why only Igneous Rocks?

- Igneous rocks are a closed system
 - Metamorphism opens up the system
 - you can date the time of metamorphism, sometimes
 - oldest rock on Earth, Acasta Gneiss (NWT, Canada), dated at 3.96 billion years
 - Sedimentary rocks can be dated for individual minerals but not for the rock itself: still, not a closed system
 - A Mesozoic sandstone (age know through relative methods), still from Canada, contains zircons grains dated at 4 billion years
 - the grain is older than the previous rock, but it is NOT A ROCK
 - − It is always a safe bet to date with two different systems
 P→D: dates should be *concordant*

Fission-Track Dating

- Uranium decay also leaves linear tracks in crystals
- Counting how much uranium is left, and how many fission tracks are present, allows dating
- If the rock gets heated (metamorphism!), tracks are annealed and method does not work

¹⁴C methods

- ¹⁴C is produced by high-energy solar radiation in the upper atmosphere: ¹⁴N is "excited" and transformed into ¹⁴C
- ¹⁴C enters Earth's systems, becoming part of atmospheric CO₂
- ¹⁴CO2 is then taken up by algae and plants during photosynthesis
- Plants contain the same amount of ¹⁴C of the atmosphere
- Animals eat plants
- Animals contain the same amount of ¹⁴C of the atmosphere too

Conifer forest

Medicine Lake Siskiyou County, California

© Alessandro Grippo

¹⁴C methods

- ¹⁴C amounts remain constant in living organisms and also in certain kinds of ceramics (as long as the system is, again, closed)
- ¹⁴C is not replaced upon death, so that we can go back in time to the moment of death by knowing its half-life (5730 years)
- Because this half-life is very short, we cannot use the method on organic matter that is older than 50,000 years ago
- So, we CAN date fossils with this method as long as they are < 50,000 years old
 - Human bones: yes
 - Dinosaur bones: no

© Cengage Learning

Other Numerical Methods

(not using radioactivity)

 We have to be able to count, and anchor that count to a known, specific date (otherwise we have so -called "floating chronologies"):

– Tree Rings

- yearly rings
- Varves
 - yearly sediment couples
- Milankovitch (Astronomical) Cycles
 - astronomical patterns (20,000, 40,000, 100,000, 400,000 years)

Tree Rings

Tree Rings Lake Como, Hamilton, Montana

© Alessandro Grippo

Varves

- Glacial sediments constituted by a light-colored layer and a dark –colored layer
- Light colored sediment is deposited during warm season
- Dark colored sediment is deposited during cold season
- A varve represents 1 calendar year

Milankovitch Cycles

knowing the duration of a layer, and counting the layers

Cretaceous Scaglia Bianca Formation (limestone) Gubbio, Perugia, Italy

© Alessandro Grippo

What method should I use?

- It depends on what I have available
- It depends on the age range I need to estimate
- If older than one million years, I will use radioactive methods

NUMERICAL TIME

the end