OCEANOGRAPHY

10. Beaches, Shoreline Processes and the Coastal Ocean (part 3)

notes from the textbook, integrated with original contributions

10.4 – How Do Changes in Sea Level Produce Emerging and Submerging Shorelines?

- Sea level can change over geological time
 - land can sink (subsidence) or rise (uplift)
 - water can sink (regression) or rise (transgression)
- Shorelines that are rising above sea level are called emerging shorelines
- Shorelines that are sinking below sea level are called submerging shorelines

features of emerging shorelines

• marine terraces

- seen earlier around Palos Verdes, California
- flat platforms backed by cliffs formed when wave-cut benches are exposed above sea level
- stranded beach deposits
 - ancient beaches that can be found above the present shoreline

features of submerging shorelines

- wave-cut benches below sea level
 - contain drowned beaches
- submerged dune topography
- drowned river valleys
 - example: Chesapeake Bay, east coast U.S.A.

Changing Sea Level

Two major processes can change sea level:

- Local tectonic processes
 - land can go up or down
- Global (eustatic) changes in sea level
 - the amount of water increases or decreases
 - the volume of water can expand or shrink
 - the shape of the oceans can change, reducing or increasing the space for water

Changing Sea Level

- Local tectonic processes
 - Example: the Pacific coast of the United States is currently being uplifted.
 - Isostatic adjustments rebound of Earth's crust after removal of heavy loads or sinking with application of heavy loads
 - Ice-loading from glaciers during ice ages

Changing Sea Level

- Global (eustatic) changes in sea level
 - Sea level changes worldwide due to
 - Change in amount of available sea water
 - water locked up as ice during cooler climate phases
 - water released into oceans during warmer climate phases
 - Change in ocean basin capacity
 - controlled by expansion rates at mid-ocean ridges
 - Change caused by thermal expansion and contraction of seawater
 - Warmer water expands and cooler water contracts
 - Sea level rises and falls in response to seawater temperature
 - This is roughly 2 meters (6.6 feet) per 1°C (1.8°F) change in temperature.

More or less water in the oceans?

- During Greenhouse Times, there is no ice at sea level
 - Ice melts and flows into the ocean
 - Sea level rises (transgression)
- During Icehouse Times, there is ice at sea level
 - Snow does not melt and turns into ice, preventing water from going back into the ocean
 - Sea level drops (regression)

Eustatic Changes in Sea Level

Some Mechanisms

- Ice ages lock seawater up in ice (glaciation)
 sea level goes down
- Ice melting after an ice age (deglaciation)
 - sea level rises

Pleistocene Epoch and Today

- From about 2 million to 10,000 years ago, a series of four ice ages affected Earth.
- Sea level was at least 120 meters (400 feet) below today's sea level.
- If all remaining ice on Earth melted today, sea level would rise another 70 meters (230 feet).

Isn't the space at the ocean bottom always the same?

- No, it depends on expansion rates at mid-ocean ridges
- A fast spreading ridge produces a lot of oceanic crust in a short amount of time
 - That would cause more oceanic crust to be at high temperature, that would be expand and be more buoyant
 - There would be less space for water, which would flood continents (transgression)
 - example: North America in the mid-Cretaceous
- A slow spreading rate would see a quickly cooling oceanic crust around mid-ocean ridges
 - The crust would then sink, or stay at a lower level
 - This would generate more space for the water, that would retreat from continents (regression)
 - example: North America in the Pleistocene

past North America

peak Greenhouse: Cretaceous

peak Icehouse: Pleistocene

Global Warming and Changing Sea Level

- Globally averaged temperatures about 0.6°C (1.1°F) warmer over last 130 years
- Sea level rose 10-15 cm (4-10 in) over past 100 years
- As global warming continues, we will see a higher sea level.

© 2011 Pearson Education, Inc.

United States Coasts

erosion vs. deposition

Atlantic Coast

- Most coasts open to storm wave attack
- Barrier islands common from Massachusetts southward
- Bedrock
 - Florida bedrock is resistant limestone.
 - Northward through New Jersey is comprised of recent deposits that can be easily eroded
 - New York through Maine has glacier-affected rocks.

Atlantic Coast

- Strong storms called nor'easters can damage the coast north of Cape Hatteras, NC.
- Nor'easters can generate storm waves up to 6 meters (20 feet).
- Drowned river valleys common
- Average erosion is 0.8 meter (2.6 feet) per year; sea is migrating landward
- Delaware, New York, and Georgia have the most serious erosion problem.

Atlantic Coast

- Barrier islands
- Drowned river valleys

Gulf Coast

- Low tidal range
- Generally low wave energy
- Tectonically subsiding
- Mississippi delta dominates
 - Locally sea level rises due to compaction of delta sediments
- Average rate of erosion is 1.8 meters (6 feet) per year

Pacific Coast

- Tectonically rising
- Experiencing less erosion than Atlantic or Gulf coasts
- Open exposure to high energy waves
- Average rate of erosion 0.005 meter (0.016 feet) per year