Plutonism and Intrusive Igneous Rocks

notes from the textbook, integrated with original contributions

Alessandro Grippo, Ph.D.

Granite, an intrusive igneous rock, in the Sierra Nevada Tuolumne Meadows, Yosemite National Park, California

© Alessandro Grippo

Magma

- Any rock can be melted under the right condition of pressure and temperature
- That melt is called magma
- Magma can contain solid, liquid, and gaseous materials

Magma vs. Lava

- When magma solidifies, it forms **igneous rocks**
 - If magma solidifies slowly within Earth's surface it generates *intrusive igneous rocks* (e.g., granite)
 - If magma solidifies quickly at Earth's surface it is called **lava**, and it generates *extrusive igneous rocks* (e.g., basalt)

How do we classify igneous rocks?

- We use composition and texture of the rocks
- The chemical **Composition** refers mainly to their iron and silica content
- **Texture** refers to the size, shape, and arrangement of mineral grains (crystals, in the case of igneous rocks)

• Textural classification

- *Plutonic* or *intrusive* rocks (gabbro-diorite-granite) are coarsegrained and cooled slowly at depth
 - Grains are visible to the naked eye
 - Two textures: pegmatitic, phaneritic
- Volcanic or extrusive rocks (basalt-andesite-rhyolite) are typically fine-grained and cooled rapidly at the Earth's surface
 - Grains are not visible to the naked eye, or absent (e.g. obsidian, a volcanic glass)
 - Six textures: porphyritic, **aphanitic**, glassy, vesicular, frothy, pyroclastic

Compositional classification

- Mafic rocks (gabbro-basalt) contain abundant dark-colored ferromagnesian minerals
- Intermediate rocks (diorite-andesite) contain roughly equal amounts of dark- and light-colored minerals
- Felsic rocks (granite-rhyolite) contain abundant light-colored minerals

Composition

- Rock chemistry, particularly *silica* (SiO₂) content, determines mineral content and general color of igneous rocks
 - Ultramafic rocks have <45% silica, by weight, and are composed almost entirely of dark-colored ferromagnesian minerals
 - Most common ultramafic rock is peridotite (intrusive)
 - Mafic rocks have ~50% silica, by weight, and contain dark-colored minerals that are abundant in iron, magnesium and calcium
 - Intrusive/extrusive mafic rocks gabbro/basalt
 - Intermediate rocks have silica contents between those of mafic and felsic rocks
 - Intrusive/extrusive intermediate rocks diorite/andesite
 - Felsic (silicic) rocks have >65% silica, by weight, and contain lightcolored minerals that are abundant in silica, aluminum, sodium and potassium
 - Intrusive/extrusive felsic rocks granite/rhyolite

STEP 1 & 2: MCI and Mineral Composition

Quartz

hard, transparent, gray, crystals with no cleavage

Plagioclase Feldspar

hard, opaque, usually pale gray to white crystals with cleavage, often striated

Potassium Feldspar

hard, opaque, usually pastel orange, pink, or white crystals with exsolution lamellae

Muscovite Mica

flat, pale brown, yellow, or colorless, crystals that scratch easily and split into sheets

Biotite Mica

flat, glossy black crystals that scratch easily and split into sheets

Amphibole

hard, dark gray to black, brittle crystals with two cleavages that intersect at 56 and 124 degrees

Pyroxene (augite) hard, dark green to green-gray crystals with two cleavages that intersect at nearly right angles

Olivine (gemstone peridot)

hard, transparent to opaque, pale yellow-green to dark green crystals with no cleavage

Mafic Color Index (MCI): the percent of mafic (green, dark gray, black) minerals in the rock. See the top of Figure 5.2 and GeoTools Sheets 1 and 2 for tools to visually estimate MCI.

Eight Textures

- Pegmatitic
 - Visible crystals bigger than 1 cm in size
- Phaneritic (Coarse-grained)
 - Visible crystals smaller than 1 cm in size (most common)
- Porphyritic
 - Two crystal sizes together in the same rock
- Aphanitic (Fine-grained)
 - Invisible crystals (most common)
- Glassy
 - No crystals (e.g., obsidian)
- Vesicular
 - vesicles left in the rock by escaping gases; e.g., vesicular basalt
- Frothy
 - a variety of vesicular that applies to felsic, viscous magmas; e.g., pumice
- Pyroclastic, or Fragmental
 - after volcanic explosions; e.g., volcanic breccia and volcanic tuff

STEP 3: Texture

INTRUSIVE ORIGIN

Pegmatitic

mostly crystals larger than 10mm: very slow cooling of magma

Phaneritic

crystals about 1–10 mm, can be identified with a hand lens: slow cooling of magma

Porphyritic

large and small crystals: slow, then rapid cooling and/or change in magma viscosity or composition

Aphanitic crystals too small to identify with the naked eye or a hand lens; rapid cooling of lava

Glassy

rapid cooling and/or very poor nucleation

Vesicular

like meringue: rapid cooling of gas-charged lava

Vesicular some bubbles: gas bubbles in lava

Pyroclastic or Fragmental: particles emitted from volcanoes

¹Phenocrysts are crystals conspicuously larger than the finer grained groundmass (main mass, matrix) of the rock.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Granite

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Andesite (porphyritic)

Gabbro

 $10 \times$ close-up of peridotite

Hand sample (actual size)

How Magma Forms

- Heat from below
 - Heat upward (by conduction and convection) from the very hot (>5000°C) core through the mantle and crust
- Heat vs. pressure
 - Melting point of minerals increases with increasing pressure
 - In the hottest regions within the upper mantle and crust, pressure can be low enough for melting to occur
- Hot water under pressure
 - Water becomes increasingly reactive at higher temperatures
 - At sufficient pressures and temperatures, highly reactive water vapor can reduce the melting point of rocks by over 200°C
- Mineral mixtures
 - Mixtures of minerals, such as quartz and potassium feldspar, can result in the melting of both at temperatures hundreds of degrees lower than either mineral would melt on its own

Bowen's Reaction Series

• Minerals crystallize in a predictable order, over a large temperature range

remaining

• Discontinuous series of crystallization

- Mafic minerals (olivine, pyroxene, amphibole, biotite) crystallize in sequence with decreasing temperature
- As one mineral becomes chemically unstable in the remaining magma, another begins to form
- *Continuous series of crystallization*
 - Plagioclase feldspar forms with a chemical composition that evolves
 - (from Ca-rich to Na-rich) with decreasing temperature
- Final stages of crystallization
 - At lower temperatures, if there is still magma left, cooling will not affect the two end terms of the series (biotite and Na-plagioclase)
 - It will form quartz and K-feldspar directly out of magma

- A large variety of igneous rocks is produced by a large variety of *magma compositions*
- Mafic magmas will crystallize into basalt or gabbro if earlyformed minerals are not removed from the magma
- Intermediate magmas will similarly crystallize into diorite or andesite if minerals are not removed
- Separation of early-formed ferromagnesian minerals from a magma body increases the silica content of the remaining magma
- Minerals melt in the reverse order of that in which they crystallize from a magma

Magma Evolution

- A change in the composition of a magma body is known as *magma evolution*
- Magma evolution can occur by differentiation, partial melting, assimilation, or magma mixing

Differentiation

 Differentiation involves the changing of magma composition by the removal of denser early-formed ferromagnesian minerals by crystal settling

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Partial melting produces magmas less mafic than their source rocks, because lower melting point minerals are more felsic in composition
- Assimilation occurs when a hot magma melts and incorporates more felsic surrounding country rock
- Magma mixing involves the mixing of more and less mafic magmas to produce one of intermediate composition

© The McGraw-Hill Companies, Inc. Permission required for reproduction or di

- Silicic magma moving slowly upward

Mafic magma moving rapidly

Intrusive Rock Bodies

- Intrusive rocks exist in bodies or structures that penetrate or cut through pre-existing *country rock*
- Intrusive bodies are given names based on their size, shape and relationship to country rock
 - Shallow intrusions
 - Form <2 km beneath Earth's surface
 - Chill and solidify fairly quickly in cool
 - country rock
 - Generally composed of fine-grained rocks
 - Deep intrusions: *Plutons*
 - Form at considerable depth beneath Earth's surface when rising blobs of magma (*diapirs*) get trapped within the crust
 - Crystallize slowly in warm country rock
 - Generally composed of coarse-grained rocks

Volcanic Necks

Shiprock, Farmington, New Mexico

Plutons

Sierra Nevada batholith

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Igneous Activity and Plate Tectonics

- Igneous activity occurs primarily at or near tectonic plate boundaries
- Mafic igneous rocks are commonly formed at *divergent boundaries*
 - Increased heat flow and decreased overburden pressure produce mafic magmas from partial melting of the asthenosphere
- Intermediate igneous rocks are commonly formed at *convergent boundaries*
 - Partial melting of basaltic oceanic crust produces intermediate magmas

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

• Felsic igneous rocks are commonly formed adjacent to *convergent boundaries*

Hot rising magma causes partial melting of the granitic continental crust

• Intraplate volcanism

- Rising mantle plumes can produce localized hotspots and volcanoes when they produce magmas that rise through oceanic or continental crust
- Hawaii is an example

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The End