Introduction to **PLATE TECTONICS**

part 3: Plate Boundaries, Hot Spots, and mechanisms

Alessandro Grippo, Ph.D.

previously...

- Plate Tectonics says that Earth's surface is broken down in a series of lithospheric plates, moving around passively, dragged by motion in the asthenosphere
- Plates mostly interact with each other at their edge, or Plate Boundary
- Plate Boundaries can be divergent, transform, and convergent

• *Divergent* boundaries

- Plates move apart (*spreading*)
- Magma rises, cools and forms new oceanic crust (basalt)
- Typically expressed as *mid-ocean ridges* (or *rises*)
- Both *Volcanic Activity* and *Earthquakes* are present

• *Transform* boundaries

- Plates slide past one another
- Fault zones and *Earthquakes* mark boundary, but there is *no Volcanic Activity*
- Connect segments of the mid-ocean ridge

• Convergent boundaries

- Plates move toward each other
- Mountain belts and *Volcanoes* common, deepest and strongest *Earthquakes*
- Oceanic plates may sink into mantle along a *subduction zone*, typically marked by a deep ocean *trench*

Plate Boundaries

DIVERGENT BOUNDARIES

A Continent undergoes extension. The crust is thinned and a rift valley forms (East African Rift Valleys)

B Continent tears in two. Continent edges are faulted and uplifted. Basalt eruptions form oceanic crust (Red Sea)

C Continental sediments blanket the subsiding margins to form continental shelves and rises. The ocean widens and a mid-oceanic ridge develops (Atlantic Ocean)

An early rift stage

Death Valley, California

Death Valley is part of the Basin and Range Desert, where the crust is being stretched and thinned. All the characteristic features of a rifting zone found in the East African Rift can also be seen in here, albeit to a smaller scale.

A linear sea stage

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The Red Sea (Egypt to the right, Saudi Arabia to the left)

The Red Sea represents a "linear sea" stage, that is an ocean that is long and narrow.

At this stage, oceanic crust is already present at the bottom of the ocean.

The Atlantic Ocean: a fully developed ocean

Passive vs. Active Continental Margins

A continental margin is where a continent meets the ocean.

If that coincides with a plate boundary, it is called an **Active Margin** (such as the North American west coast).

If that does not coincide with a plate boundary, it is called a **Passive Margin** (such as the North American east coast)

- Continental Shelf
- Slope
- Continental Rise
- Abyssal Plain
- Mid-Ocean Ridge
- Seamounts
- Trench

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A Mid-Ocean Ridge: the central Rift Valley

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

в

A black smoker in the rift valley of a Mid-Ocean Ridge

Pillow Basalt at a Mid-Ocean Ridge

TRANSFORM BOUNDARIES

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

А

в

С

The San Andreas Fault in the field: Wallace Creek (San Luis Obispo County)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Α

В

CONVERGENT BOUNDARIES

- Three distinct cases of convergence:
 - Oceanic Crust / Oceanic Crust
 - Subduction, Island Volcanic Arc, Earthquakes
 - Oceanic Crust / Continental Crust
 - Subduction, Island Volcanic Arc, Earthquakes
 - Continental Crust / Continental Crust
 - No subduction, Mountain Building (No Volcanoes), Earthquakes

Oceanic Crust / Oceanic Crust Convergence

The Aleutian Islands (Alaska)

Oceanic Crust / Continental Crust Convergence

The Cascades: Mt. Shasta, California

part of a volcanic arc formed by ocean / continent collision

Why are volcanic arcs (and trenches too!) "arced"?

Continental Crust / Continental Crust Convergence

- Continental crust has a SG of 2.7, compared to oceanic crust at SG = 3
- Continental Crust is too buoyant to sink back into the asthenosphere
- There is no subduction
- There is no partial melting
- There is mountain building with no volcanic activity
- Doubling of the Continental Crust (Himalayas)

A Ocean-continent convergence

B Ocean-continent convergence

C Continent-continent collision

The Alps

a mountain chain formed by continent/continent collision

The Alps: Monte Bianco (Mont Blanc), Italy

CONVERGENT BOUNDARIES: a summary

Western North America: A future divergent boundary?

- Convergence between the North American Plate and the Pacific Plate put the Pacific Rise (ridge) in subduction: the ridge disappears by the Salton Sea and reappears north of Cape Mendocino, connected by the San Andreas Fault.
- The ridge is an area of high heat flow so it will not really subduct, but rather "slide" almost horizontally underneath North America, while keeping on expanding at depth.
- As a consequence the Colorado Plateau has been uplifted and the Basin and Range desert has been "stretched"
- The Basin and Range covers eastern California, Nevada and western Utah. California's Death Valley is an example of a tectonic rift caused by expansion, and presents all the characteristic of an early rifting stage

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

PLATE BOUNDARIES: a summary

V TABLE 2.1 Types of Plate Boundaries: Dynamics, Results, and Examples

Plate Boundary	Plates Involved	Dynamics	Results	Examples	Natural Hazards
Divergent	Usually ocean	Spreading. The two plates move away from each other and molten rock rises up to fill the gap.	Mid-ocean ridge forms and new oce- anic lithosphere is created and added to each plate.	Mid-Atlantic Ridge, which defines the African and North American plate boundary (Figure 2.8)	Light to moderate earthquakes and nonexplosive volca- nic eruptions
Convergent (subduction)	Ocean– continent	Oceanic plate sinks beneath continental plate.	A volcanic conti- nental arc and deep trench are formed. Earthquakes and volcanic activity are found here.	Andes Mountains, a continental volcanic chain formed at the Nazca and South American plate bound- ary (Figure 2.4a)	Great earthquakes; explosive volcanic eruptions; tsunamis, flooding, mass wast- ing, and subsidence
Convergent (subduction)	Ocean–ocean	Older, denser, ocean- ic plate sinks beneath younger, less dense oceanic plate.	A volcanic island arc and deep trench is formed. Earthquakes and volcanic activity are found here.	Caribbean Islands, an ocean island arc formed at the boundary between the Caribbean and South American plates (Figure 2.4a)	Great earthquakes; explosive volcanic eruptions; tsunamis, flooding, mass wasting, and subsidence
Convergent (collision)	Continent– continent	Neither plate is dense enough to sink into the astheno- sphere; compression results.	A large, high moun- tain chain is formed, and earthquakes are common.	Himalayan Mountains, the result of collision and shortening between the Indo-Australian and Eurasian plates (Figure 2.4a)	Major earthquakes, flooding, and mass wasting
Transform	Ocean–ocean or continent– continent	The plates slide past one another.	Earthquakes are com- mon and may result in some topographic changes.	San Andreas fault, which defines the boundary between the North American and Pa- cific plates (Figure 2.11)	Strong to major earthquakes

What causes plate motions? Convection!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MANTLE PLUMES and HOT SPOTS

- Mantle plumes
 are narrow
 columns of of hot
 mantle rock that
 rise through the
 mantle itself
- Plumes form *hot* spots of active volcanisms at Earth's surface

Most Hot Spots are located in volcanic regions

The role of hot spots in breaking up continental crust

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Aulacogens, or Failed Rifts

Aulacogens in North America and Europe

the Mississippi River (left) and Rhine River (right) valleys

Hot spots that are fixed and plates that are moving

Through oceanic crust: Hawai'i

Hot spots that are fixed and plates that are moving

Through continental crust: Yellowstone

The Yellowstone-Teton Geologic System

Plate Tectonics

end